If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 16 + -10m + -1m2 = 0 Solving 16 + -10m + -1m2 = 0 Solving for variable 'm'. Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. -16 + 10m + m2 = 0 Move the constant term to the right: Add '16' to each side of the equation. -16 + 10m + 16 + m2 = 0 + 16 Reorder the terms: -16 + 16 + 10m + m2 = 0 + 16 Combine like terms: -16 + 16 = 0 0 + 10m + m2 = 0 + 16 10m + m2 = 0 + 16 Combine like terms: 0 + 16 = 16 10m + m2 = 16 The m term is 10m. Take half its coefficient (5). Square it (25) and add it to both sides. Add '25' to each side of the equation. 10m + 25 + m2 = 16 + 25 Reorder the terms: 25 + 10m + m2 = 16 + 25 Combine like terms: 16 + 25 = 41 25 + 10m + m2 = 41 Factor a perfect square on the left side: (m + 5)(m + 5) = 41 Calculate the square root of the right side: 6.403124237 Break this problem into two subproblems by setting (m + 5) equal to 6.403124237 and -6.403124237.Subproblem 1
m + 5 = 6.403124237 Simplifying m + 5 = 6.403124237 Reorder the terms: 5 + m = 6.403124237 Solving 5 + m = 6.403124237 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + m = 6.403124237 + -5 Combine like terms: 5 + -5 = 0 0 + m = 6.403124237 + -5 m = 6.403124237 + -5 Combine like terms: 6.403124237 + -5 = 1.403124237 m = 1.403124237 Simplifying m = 1.403124237Subproblem 2
m + 5 = -6.403124237 Simplifying m + 5 = -6.403124237 Reorder the terms: 5 + m = -6.403124237 Solving 5 + m = -6.403124237 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + m = -6.403124237 + -5 Combine like terms: 5 + -5 = 0 0 + m = -6.403124237 + -5 m = -6.403124237 + -5 Combine like terms: -6.403124237 + -5 = -11.403124237 m = -11.403124237 Simplifying m = -11.403124237Solution
The solution to the problem is based on the solutions from the subproblems. m = {1.403124237, -11.403124237}
| 4(7t-5)=2(9t+5) | | 4c+1=4c+2 | | (4x+2)=26 | | (7p-7)=(2p+4) | | 160+0.25m=352.50 | | 2b+a=8 | | 2(X+5)+5X=35 | | 4(2k-3)=2(4k-6) | | 4t-6=2t-2 | | 4.1x-7.18=8.4 | | X-4/5x10 | | (4x+9)2=64 | | 2x-5(x-3)=-8+5x-9 | | 7a+6=3a+6 | | (6a-8)=(6a+4) | | 200m-125m+48500=50500-175m | | 6(x-2)+5(2x+4)= | | 5x-2=3x+7whatisX | | 8(x-3)+10= | | 4/5(9x-20)-3x=4/5x-6 | | 4(a+5)-(2a-3)= | | 1.6xwhat=12.8 | | 16b+-8b=-16 | | -4/3a=20 | | 5x+12+68=180 | | x^2+4y^2-z^2=4 | | 5x^2+xy+4y^2= | | 5F=35-4F | | 11a-5a=12 | | x^3-15x^2+50x+80=0 | | 1/2(4x-10)=x-5 | | x-6/3=21 |